

WFIRST meeting 2-3rd Feb 2011

Outline

- Modeling modifications to GR
- Effect of modification to GR on observations
- Combining observations
- Including systematics
- Figures of merit
- Some thoughts

Constraints on gravity

Terrestrial and Solar System

- Lab tests on mm scales
- Lunar and planetary ranging
- Binary pulsar timing

Galactic

- Galactic rotation curves and velocity dispersions
- Satellite galaxy dynamics

Intergalactic and Cluster

- Galaxy lensing and peculiar motions
- Cluster dynamical, X-ray and lensing mass estimates

Cosmological

- Late times: comparing lensing, peculiar velocity, galaxy position, ISW correlations
- Early times: BBN, CMB peaks

Modifications to GR

- Alternative origin for cosmic acceleration to Λ or dark energy fluid
 - Alter Friedmann and acceleration equations at late times and on cosmic scales

$$stuff + \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_m + 3P_m)$$

- No thoroughly compelling theories, but instructive models exist
 - Examples: DGP , f(R), scalar tensor gravity
- Have to satisfy tests of gravity on all scales
 - Recover GR in high density regions (chameleon mechanism)
 - Scales at which transition occurs model dependent (kpc-Mpc?)
- Use phenomenological model rather than specific theories to
 - understand limits of current data
 - Provide benchmark for future survey goals

Modeling modifications to GR

- Can modify both homogeneous expansion (to create accelerated expansion in H(z)) and metric perturbations
- In GR, H(z) plus matter census determine perturbation evolution
 - Metric potentials ϕ and ψ ,

$$ds^{2} = -(1+2\psi)dt^{2} + a^{2}(1-2\phi)dx^{2}$$

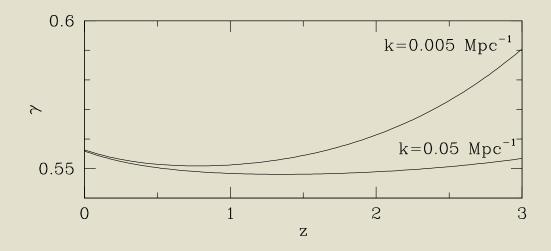
- density and velocity perturbations $\delta = \frac{\delta \rho}{\rho}$ and $\theta = \nabla . v$
- Modifications to GR alter the relationship between perturbations and background
 - Relation between ϕ and ψ , and δ and θ
 - At late times and cosmological scales, coincident with acceleration

Changing the growth rate

- The "gamma" parameter, γ
 - used by ISWG report
 - Describes change to the growth rate in CDM density perturbation

$$f \equiv \frac{d \ln \delta_c}{d \ln a} \equiv \Omega_m(a)^{\gamma}$$

- γ ~0.55 in accelerated era



Changing the relationship between ϕ and ψ

- Many theories of gravity have similar phenomenological properties
- A modification to Poisson's equation, Q

$$k^2\phi = -4\pi G Q a^2 \rho \Delta$$

Q#1: can be mimicked by

- additional (dark energy?) perturbations,
- modified dark matter evolution
- An inequality between Newton's potentials, R

$$\psi = R\phi$$

R#1: not easily mimicked.

- potential smoking gun for modified gravity?
- Significant stresses exceptionally hard to create in non-relativistic fluids e.g. DM and dark energy.

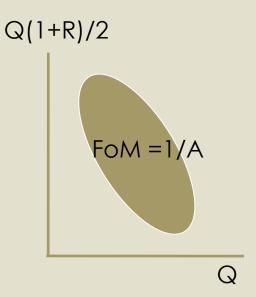
Modeling and Figures of Merit

- Simple modeling
 - scale independent, but allow simple redshift evolution
- Figures of merit in γ
 - 95% confidence limit in γ

$$\gamma(a) = \gamma_{GR}(a) + \Delta_{\gamma}$$
 $\Delta_{\gamma}(z) = \Delta_{\gamma 0} a^{s}$

- Figures of merit in Q and R
 - Area of 95% c.l. in Q and Q(1+R) plane

$$Q(a) = 1 + (Q_0 - 1)a^s$$
, $R(a) = 1 + (R_0 - 1)a^s$



Three groups of extra galactic observations for testing gravity

I: Background expansion

II: Growth, up to some normalization

III: Growth directly

CMB angular diameter distance

Supernovae luminosity distance

BAO angular scale

Galaxy autocorrelations

Galaxy – ISW x-corrln

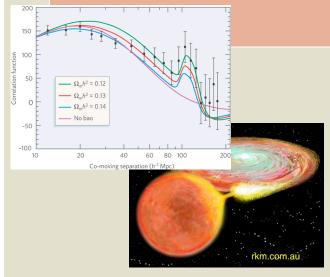
Xray and SZ galaxy cluster measurements

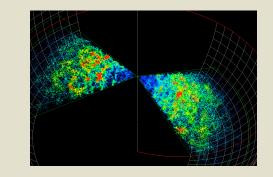
Ly-alpha measurements

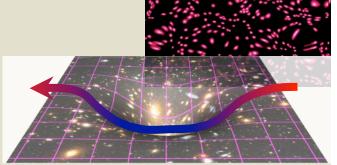
CMB ISW autocorrelation

Weak lensing autocorrelation

Peculiar velocity distribution/ bulk flows





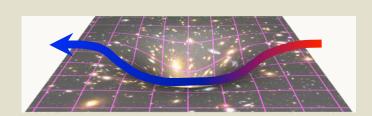


Rachel Bean WFIRST February 2011

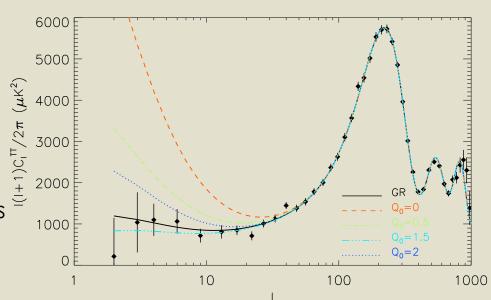
CMB autocorrelations

 Late time modifications => change in ISW on large scale

$$\frac{\Delta T}{T} \propto \dot{\phi} + \dot{\psi}$$

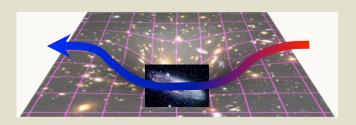


- Increasing Q or R boosts growth of LSS
 - Q and R degenerate
 - opposite effect to acceleration
 - CMB cools, ∆T reduced, and could be <0
 - $C_1 \sim \Delta T^2$ falls then increases (not monotonic)

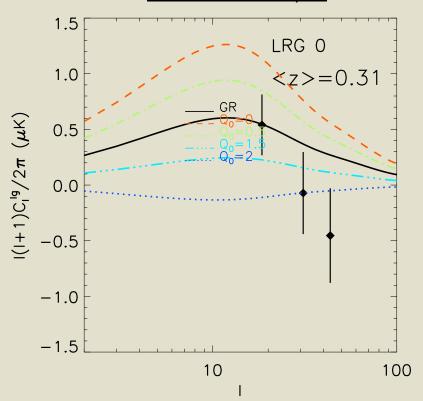


ISW-galaxy correlations

- Monotonic in Q & R
 - Galaxy position $\delta \sim \phi$
 - ISW dependent on $d(\phi+\psi)/dt$
- Boosting potential (Q,R>1)
 - Suppresses ISW
 - Reduces ISW-galaxy correlation
 - Since \(\Delta \T\) can become negative can lead to anticorrelation



ISW-galaxy correlation for low z LRG sample



Weak lensing correlations

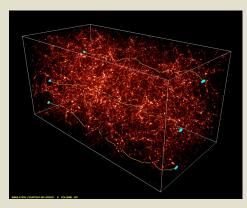
Lensing deflection angle

$$\alpha = -\nabla_{\perp}(\phi + \psi)_{2d}$$

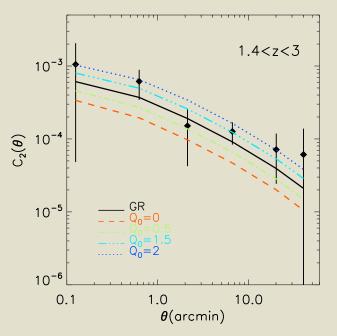
Magnification, convergence

$$\kappa = -\frac{1}{2}k^2(\phi + \psi)$$

- Boosting potentials (Q,R>1) boosts lensing amplitude
 - Monotonic and degenerate in Q (1+R)



Lensing correlation for high z sample



Peculiar velocities and bulk flows

• Coherent peculiar motions of galaxies $(\Theta=\theta/\alpha H)$ can be statistically estimated from redshift space distortions

$$P_g^{obs}(k, z, \mu) = \left[P_{gg}(k, z) + 2\mu^2 P_{g\Theta}(k, z) + \mu^4 P_{\Theta\Theta}(k, z) \right] e^{-k^2 \mu^2 \sigma_v^2(z)}$$

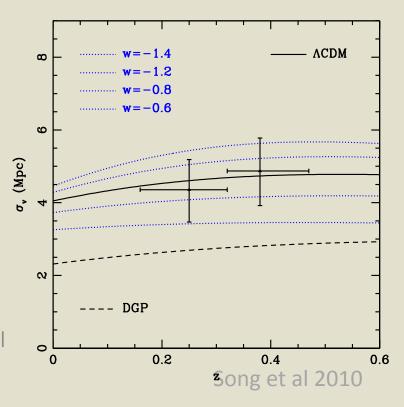
1D velocity dispersion

$$\sigma_v^2(z) = \frac{1}{3(2\pi^2)} \int dk P_{\Theta\Theta}(k, z)$$

• Complementary dependence on ϕ and ψ from galaxy position, lensing and ISW

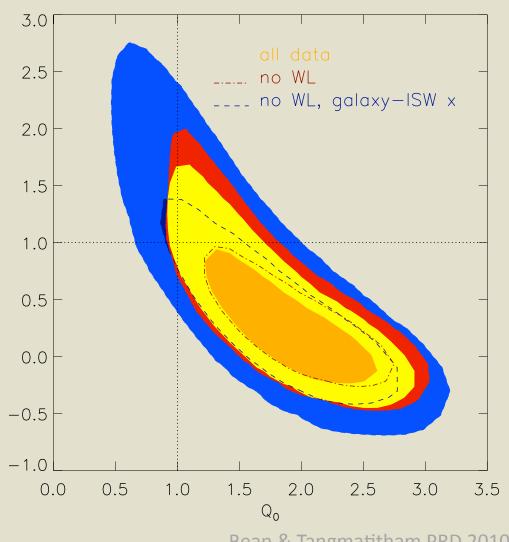
$$\frac{d(a\theta)}{dt} = k^2 \psi$$

- Emission line (star forming) galaxies
 - Sensitive flux dependency has significant implications for survey depth (Geach et al 09)



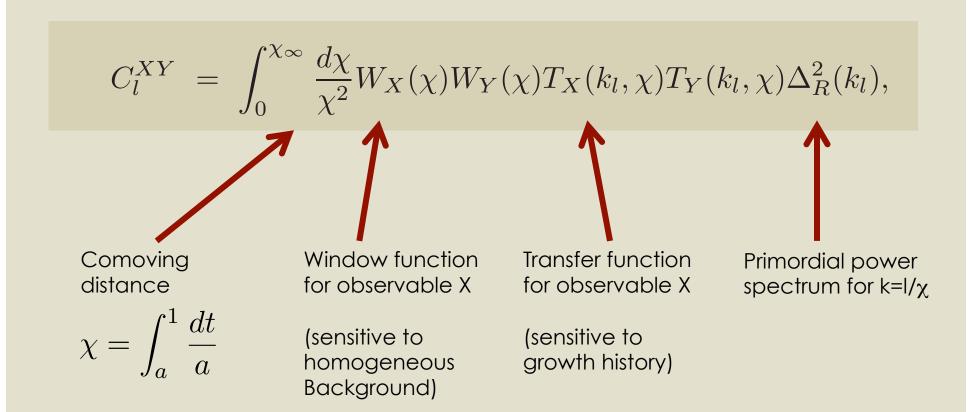
Current constraints

- WMAP, SDSS LRG auto and ISW-x correlations, COSMOS lensing, Union SN1a
- ISW and ISW-galaxy correlations drive constraints
- Principal degeneracy along Q(1+R)/2
- FoM ~ 0.02



Describing future constraints

 2-point autocorrelation between observables X and Y using Limber approximation

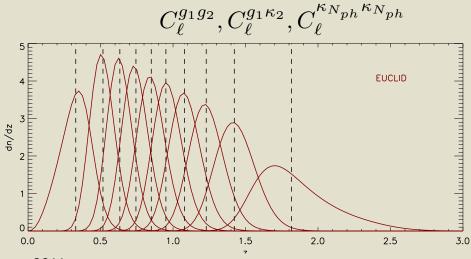


Combining observations

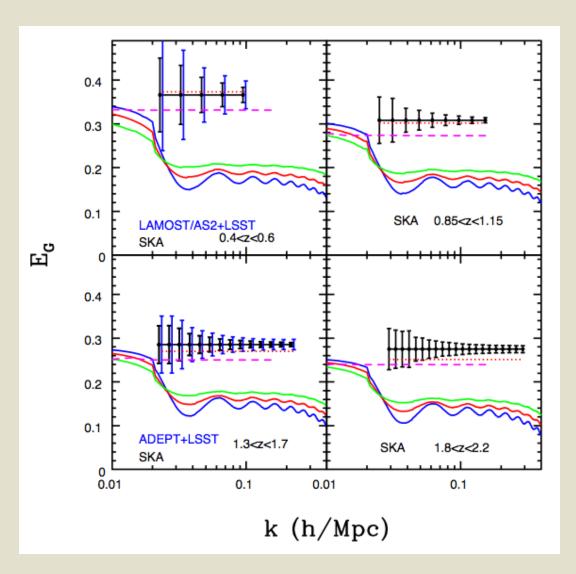
- ISW, lensing, galaxy position and peculiar velocity measurements have distinct dependence on ϕ and ψ
- Cross-correlations could be key to improving constraints
 - Between observables: helps remove bias sensitivity

$$E_g \sim \frac{C_l^{g\kappa}}{C_l^{g\Theta}}$$

Between z bins: tomography helps probe growth evolution



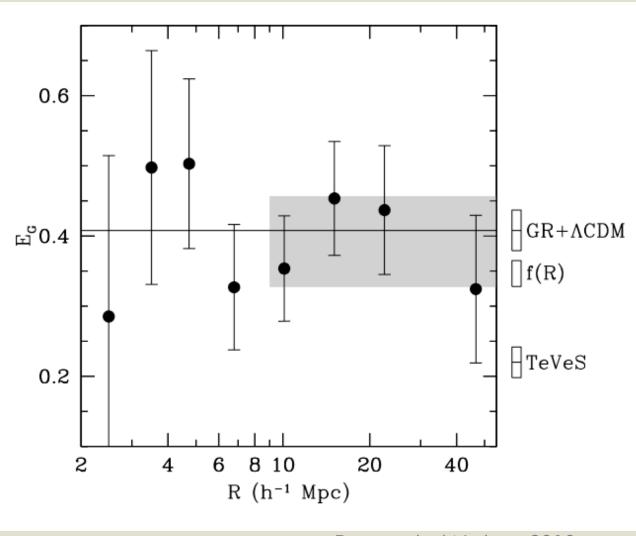
Distinguishing between modified gravity and Λ





Zhang, Liguori, RB, Dodelson PRL 2007 Rachel Bean WFIRST February 2011

Recent proof of principle with SDSS LRG data



Reyes et al Nature 2010

Modeling systematics

Bias

- K and z dependent bias interpolated on Nk x Nz bins
 - Galaxy position
 - Peculiar velocity due to evolution bias (Percival & Schafer 07)
 - Cross correlations

Nonlinearities

 Conservative approach: make cuts on linear scales (Rassat et al 08)

$$l_{max}^i = k_{max}(z_i)\chi(z_i)$$

Or assume Zel'dovich approx. holds
 & use Smith et al fit

- Intrinsic alignments (Bean, Bridle, Kirk, Laszlo in prep)
 - Additional contributions to lensing and galaxy correlations (Bernstein 09)

$$C_{\kappa\kappa} \to C_{\kappa\kappa} + C_{I\kappa} + C_{\kappa I} + C_{II}$$

 $C_{g\kappa} \to C_{g\kappa} + C_{gI}$

 Include bias uncertainties in all terms (Joachimi and Bridle 09)

Photometric redshifts

Redshift uncertainty, bias and catastrophic errors

Fisher survey and cosmological parameters

Fisher matrix analysis

$$F_{ij} = \frac{\partial t_a}{\partial p_i} Cov_{ab}^{-1} \frac{\partial t_b}{\partial p_j}$$

$$\mathbf{p} = \{\Omega_b, \Omega_c, H_0, \tau, w_0, w_a, Q_0, Q_0(1 + R_0)/2, n_s, \sigma_8; b_g^{ij}, r_g^{ij}\}$$

$$\mathbf{t} = \{C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{Tg_1}, ..., C_\ell^{Eg_1}, ..., C_\ell^{g_1g_1}, C_\ell^{g_1g_2}, ..., C_\ell^{\kappa_{N_{ph}} \kappa_{N_{ph}}}, \}$$

Including/excluding ell cut at breakdown of linearity

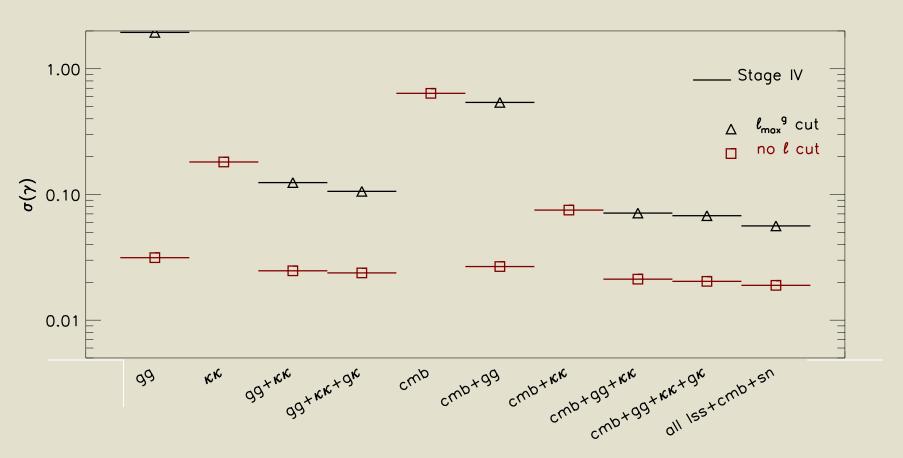
Survey Parameters	Planck		
$ u(\mathrm{GHz}) $	100	143	217
f_{sky}	0.8		
$\theta_{FWHM}({ m arc\ min})$	10.7	8.0	5.5
$\sigma_T(\mu { m K})$	5.4	6.0	13.1
$\sigma_E(\mu { m K})$	_	11.4	26.7

Survey Parameters	Stage III	Stage IV
σ_{ph}	0.07	0.05
$\sqrt{2}z_0$	0.8	0.9
N_{ph}	5	10
z_{min}	0.001	0.001
z_{max}	3	3
n_g^{2d} (per sq. arcmin)	10	35
σ_{γ}	0.23	0.35
f_{sky}	0.12	0.50

Parameter	Value
Ω_b	0.0227
Ω_m	0.1107
H_0	71.3851
au	0.0856
w_0	-1
w_a	0
Q_0	1
$Q_0(1+R_0)/2$	1
n_s	0.9693
σ_8	0.80125

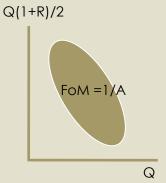
FoM 1: Error in γ

$$\Delta_{\gamma}(a) = \Delta_{\gamma 0} a^3$$

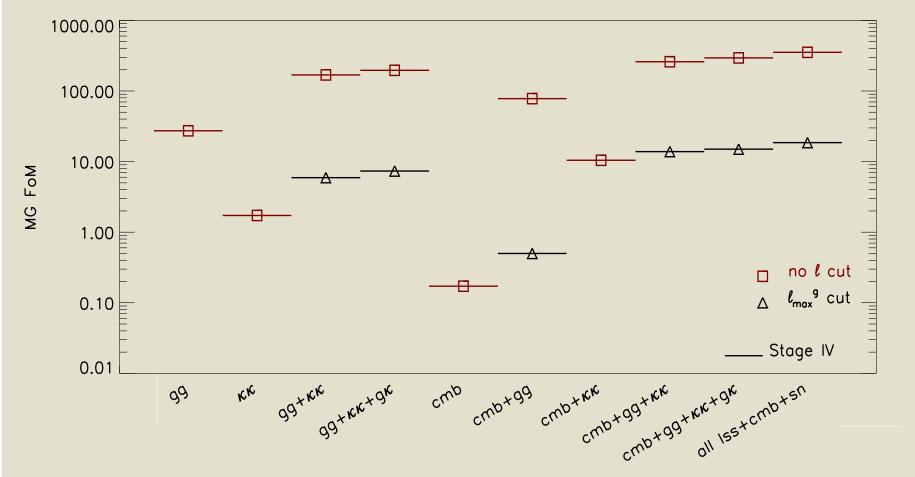


Bean, Laszlo, Muller in prep

FoM 2: Q vs Q(1+R) error ellipse



$$k^2 \phi = -4\pi G Q a^2 \rho \Delta$$
$$\psi = R \phi$$



Bean, Laszlo, Muller in prep

Thoughts

- Measuring the growth history is key to testing for large scale deviations to GR, (but also for measuring neutrino masses, primordial non-Gaussianity).
 - WFIRST can do more than measure w0/wa. This is an important opportunity, not just a twofer.
 - Should consider this in assessing WFIRST. It's not just piggy-back science
- Multiple complementary measures of growth are important to break degeneracies
 - how does WFIRST fit in with EUCLID, BiOSS/BigBOSS, LSST, others?
- Systematics modeling to be factored in on FoM calculations
 - Characterizing systematics is going to be key (need to decide how to do this for mature and nascent approaches)
- Couple of different figures of merit (do we look at both or just one?):
 - γ simple phenomenological,
 - R/Q more info. More direct tie to theory.

EXTRA SLIDES

Modifications to GR

- Large scale modifications to GR an active area of theoretical investigation
 - GR

$$S = \int d^4x \sqrt{-g} \frac{1}{16\pi G} R +$$

- f(R) gravity

$$S = \int d^4x \sqrt{-g} \frac{1}{16\pi G} \left(R + f_2(R) \right)$$

$$\frac{\ddot{a}}{a} - H^2 f_R + \frac{a^2}{6} f + \frac{3}{2} H \dot{f}_R + \frac{1}{2} \ddot{f}_R = -\frac{4\pi G}{3} (\rho + 3P)$$

- Higher dimensional gravity e.g. DGP

$$S = \int d^5x \sqrt{-g^{(5)}} \frac{1}{16\pi G^{(5)}} R^{(5)}$$

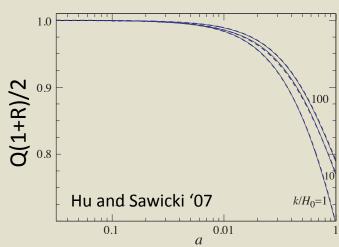
$$H^2 - \frac{H}{r_c} = \frac{8\pi G}{3}\rho$$

Theories can be described in this way

• DGP: Scale independent modifications

$$\beta(a) = 1 - \frac{2H(a)^2 l_c^2}{2H(a)l_c - 1} \qquad l_c = \frac{m_p^{(4)2}}{2m_p^{(5)3}}$$

$$Q(a) = 1 - \frac{1}{3\beta(a)}$$
 $R(a) = \frac{2}{3\beta(a) - 1}$



• f(R) gravity: scale dependent modifications

$$Q(a) = \left(1 + \frac{df}{dR}\right)^{-1}$$

R(a) more complicated

